Skip to main content

Vector Store

Vector database for AI/ML embeddings powered by pgvector. Perfect for RAG applications, semantic search, and recommendation systems.

Features

  • PostgreSQL-based with pgvector extension
  • Support for multiple distance functions (L2, inner product, cosine)
  • HNSW and IVFFlat indexing
  • Hybrid search (vector + full-text)
  • Automatic index optimization
  • Compatible with popular embedding models

Plans

PlanDimensionsVectorsPrice
Starter1536100K$18/mo
Standard30721M$54/mo
Pro409610M$135/mo

Quick Start

# Create a vector store
szc vector create my-vectors --plan starter --dimensions 1536

# Get connection string
szc vector info my-vectors

Usage with Python

import psycopg2
from pgvector.psycopg2 import register_vector

conn = psycopg2.connect("your-connection-string")
register_vector(conn)

# Create a table
cur = conn.cursor()
cur.execute("""
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
content TEXT,
embedding vector(1536)
)
""")

# Insert vectors
cur.execute(
"INSERT INTO documents (content, embedding) VALUES (%s, %s)",
("Hello world", embedding)
)

# Search
cur.execute("""
SELECT content, embedding <-> %s AS distance
FROM documents
ORDER BY distance
LIMIT 5
""", (query_embedding,))

Indexing

Create an HNSW index for faster queries:

CREATE INDEX ON documents
USING hnsw (embedding vector_cosine_ops)
WITH (m = 16, ef_construction = 64);

OpenAI Integration

from openai import OpenAI

client = OpenAI()

def get_embedding(text):
response = client.embeddings.create(
model="text-embedding-3-small",
input=text
)
return response.data[0].embedding